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ABSTRACT 

Ebola virus (EBOV) outbreak is an emergency of international concern and there has been very little 

work done to predict the spread of the virus in West Africa .The 2014 EBOV outbreak is the largest in 

the history of mankind. Despite improved control measures, Ebola remains a serious public health risk 

in African regions where recurrent outbreaks have been observed since the initial epidemic in 1976. In 

response to the continuing report of new cases of deaths (49.9% of 1914 reported cases between 1st- 31st 

August 2014) and the effects of control interventions are yet to be determined. Real-time analysis of 

EBOV could provide helpful information for public health policy in West Africa .In this study we 

describe 2014 EBOV epidemic using SIR and SEIR Models, fitting the models to the most recent data 

about reported cases and deaths in Guinea, Sierra Leone and Liberia provided estimates of the basic 

reproductive numbers Ro of EBOV in absence and presence of control intervention. We offer the most 

recent example of how tragedy can befall a country. The dynamics of these models are determined by 

the per-capita death rate of the infected individual and the per-capita effective contact rate of an 

individual contracting the disease. We computed the basic reproductive number RO   and the effective 

reproduction number Re to determine the infectiousness and the dynamics of EBOV. Finally the results 

of these outbreaks will equip epidemiologist modelling Ebola diseases in future with predictions to 

enable them minimize potential deaths. 

 

*BABANGIDA BALA GARBA 

DEPARTMENT OF MATHEMATICS AND STATISTICS, ISLAMIC UNIVERSITY IN 

UGANDA 

 

*MAFUYAI .M.Y 

DEPARTMENT OF PHYSICS UNIVERSITY OF JOS, NIGERIA 

 

Keywords: Outbreak, Public Health Policy, SIR Model, SEIR Model.  

 

INTRODUCTION 

 

The mode of transmission of Ebola is complex with 

multiple variations in the symptoms and its origin is 

somewhat obscure. There have been outbreaks of 

Ebola virus disease in central and Eastern African. The 

latest major outbreak in 2014 occurred in West Africa  

(Guinea, Sierra Leone and Liberia) with over 4000 

reported cases and 2097 deaths (53%) [20]. In this 

work we considered only the August outbreak of the 

above named countries. 

Ebola is a unique member of the ribonucleic acid virus 

family that has no known natural reservoir currently, 

(EBOV) cause a severe form of Viral Haemorrhagic 

Fever (VHF) with lethality in human ranging from 

50%-90% depending on the virus species and strain 

[18].  The incubation period of Ebola is 2-21 days, and 

the infectious period is 4-10days. The onset of Ebola 

is characterized by severe headaches, malaise, fever, 

vomiting, bloody diarrhea, and rash. Severe bleeding 

and shock and usually followed by death. The 

diagnosis of Ebola can be difficult, because Ebola is 

frequently misdiagnosed as typhoid and malaria. 

Currently there is no treatment of Ebola [4]. Ebola is 

transmitted through primary contacts with the bodily 

fluids of an infected person and health care providers 

who are in direct contact with such body fluids. Ebola 
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can also be transmitted through secondary contacts by 

family members caring for the infected. Finally, Ebola 

can be transmitted where infection control 

mechanisms are not practiced. These includes; 

washing of hands with sanitizer, wearing gloves or as 

complicated as level four disease control .Airborne 

spreads has not been proven as a means of 

transmission.  The high virulence in humans and the 

bio-threat classification as bio-safety level 4/category 

A, pronounce the complex diversity of the models. 

There are not adequate animal models   for the 

remaining Ebola virus species Sudan Ebola virus 

(SEBOV), cote d’lvoire Ebola virus (CIEBOV) and 

Reston Ebola virus (REBOV) [8]. 

 

Dynamic transmission models are increasing in being 

used to improve our understanding of the 

epidemiology and the spread of the disease .However 

there has been no recent comprehensive review of this 

emerging field. We therefore summarize how 

mathematical model of improved version can be 

developed over time. Recent out breaks of Ebola in 

West Africa began in Guinea in December, 2013 and 

later spread to Liberia, and Sierra Leone. Historically 

human behavior has been intractably linked with the 

spread of infectious diseases [15], understanding the 

mode of transmission is Key to improving control 

efforts. The literature of the mathematical modeling of 

the transmission of Ebola is rather Scant. [3] 

Conjuncture that the infection process obeys a non – 

linear saturation – type law. [6] investigated the role 

of aquatic reservoir, while [9] extended, this model to 

include hyper infectious state of the virus [14] 

assented the effect of treatment in a model with 

carriers. To the best of our knowledge, these studies 

which none has heretofore articulated quarantine 

control intervention in West Africa Concurrently do 

not explicitly consider a deterministic compartmental 

model with control measures. [17] model optimal 

intervention strategies by introducing control variables 

to lower contact rate, increase treatment and 

accounting for vaccination. While to formulate and 

analyze a deterministic model for Ebola that includes 

vaccinating susceptible individuals, quarantine, and 

treatment of infected individuals. This study is to 

better understand the mathematical dynamics of a 

population infected by Ebola when an outbreak 

occurs. We are using systems of differential equations 

to model the outbreaks.  

 

DESCRIPTION OF MODEL 

 

The object of this part of the research is to model West 

African’s August, 2014 Ebola Virus disease epidemic 

outbreak, using the Susceptible – Infections – 

Recovery (SIR) model. The dynamics of this system 

happened in two stages: Susceptible to infected, and 

infected to dead. This suggests a closed system where 

the susceptible could become infected at some point in 

time. This model assumes that the initial population is 

equal to the population that will eventually be infected.  

The general epidemic model assumes that the people 

begin susceptible to infections disease may become 

infected by exposure to an infectious person, 

becoming immediately infections themselves and after 

a time t period either recover or die. Recovery 

constitutes immunity to further infection and they are 

said to be removed. 

 

The simplest version of this SIR model assumes 

homogenous mixing and a fixed population size N = S 

(t) + I (t) + R (t ) where S(t), I (t) and R(t) are the 

numbers of the population who are susceptible, 

infections and removed at time t. Each contact 

between susceptible and an infections patient has a 

probability, P, of leading to transmission and contacts 

occur at a rate, C per day. Following a model proposed 

by [12] to explain the frequent rapid rise of Ebola virus 

disease in West Africa on observed frequently in 

epidemics such as the London cholera epidemic in 

1865. We are able to propose a model that 

approximates the outbreak reasonably well. The 

classical system of ordinary differential equations 

(ODEs) is  

      
dS

dt
   =   - 

CpSI

N
 

    

     
dI

dt
   =    

CpSI

N
   – γI    (2.0.1) 

 

     
dR

dt
   =   γI 

     

Where C and γ are positive constant and 0 < P ≤ I. If 

one does not require a separate estimate of P and C one 

can use β  = CP. The behavior of the system is 

governed by the first two equations and the number of 

recovered R can be calculated .The differential 
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equation for the number of infectious, I (t) can be 

rewritten then as  

 

 

      
dI

dt
  = β I (S- 

γ

β
)      (2.0.2) 

                         

Which leads to a critical value of the susceptible .In 

order for an epidemic to proceed, the number of the 

population that are susceptible must be greater than  
γ

β
 

, and if the united value βN is less than γ, an epidemic 

out break will not occur. Line arising the systems 

about steady state (S, I, R) and putting S = S + S and   

I =I + i leads to  

 

                                                                       

(
S
𝒾

) (
−β −  βs

βI      Bs − γ
)  (

S
𝒾

)   (2.0.3) 

 

 The dominant eigenvalue of the Jacobian at the steady 

state (S= N, I= 0) gives the growth rate of the epidemic 

curve, namely β N –γ . The rate of transition from 

susceptible to infective and of removal from infective 

is same as the mean field model [12]. Knowing the 

parameters, it will be easy to compute the solution 

numerically unfortunately the parameters are rarely 

known and a fitting has to be model if the epidemic is 

well described by the model. 

 

The model takes into consideration the number of 

people infected due to  direct contact with an infected 

individual at time (t) β 
S.I

N
, where β  = CP; P is the 

probability of successfully getting infected when 

coming into contact with  an infected individual and C 

is the per capita contact rate. The death rate is denoted 

by γI, where γ is the per capita death rate. Even though 

recoveries do occur, we will not return these 

individuals to the susceptible class since there has 

never been a person who has recovered from Ebola 

and contracted the disease again in the same epidemic. 

The data which we are studying is the number of 

people that died each day during the August outbreak 

in West Africa (Guinea, Liberia and Sierra Leone in 

2014).

 

TABLE: 1 Cumulative Ebola Cases and deaths as of the month of August, by   country by date reported from 

the three countries from   22nd March - 31st   August, 2014. [19] 

Date  Total Guinea Liberia Sierra Leone 

Cases Deaths  Cases Deaths Cases Death Cases Death 

31 Aug 2014  3,707 1,848 771 494 1,698 871 1,216 476 

26 Aug 2014  3,069 1,552 648 430 1,378 694 1,026 422 

20Aug 2014  2,615 1,427 607 406 1,082 624 910 392 

18 Aug 2014 2,473 1,350 579 396 972 576 907 374 

16Aug 2014 2,240 1,229 543 394 834 466 848 365 

13Aug 2014 2,127 1,145 519 380 786 413 810 348 

11 Aug 2014 1,975 1,069 510 377 670 355 783 334 

9 Aug 2014 1,848 1,013 506 373 599 323 730 315 

6 Aug 2014 1,779 961 495 367 554 294 717 298 

4 Aug 2014 1,711 932 495 363 516 282 691 286 

1 Aug 2014 1,603 887 487 358 469 255 646 273 

 

Total cases = 3707 

Total Death = 1848 

Percentage Death = 49.9% 
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TABLE 2: Cumulative Ebola cases and death by date in the interval of days during the August 2014 

outbreak. 

Internal  Cases Death Percentage  

1st -3rd  108 45 41.6% 

4th – 5th  68 29 42.6% 

6th – 8th  69 52 75.4% 

9th – 10th  127 56 44.1% 

11th – 12th  152 76 50.0% 

13th – 15th  113 84 74.4% 

16th – 17th  133 121 90.9%  very high 

18th – 19th  142 72 50.7% 

20th – 25th  452 125 27.7% 

26th – 31st  632 296 46.4% 

 

Total cases = 1914 

Total Death = 956 

Percentage Death = 49.9%  

 

The second data is the total number of dead individuals 

at time (t), which can also be interpreted as the integral 

of the daily death data. From this we can compute β by 

solving the second differential equation for small 

values of t and relating it to the numbers of dead at 

time t since  

 

dI

dt
 = βI (

S − γ
     β

)          or           
dI

dt
 = 

βSI 

N
  - γI  (2.0.4) 

                                                     

For small t 
dI

dt
 ≈ βI –γI, solving the equation, I (t) = I 

(0) Exp [( β - γ ) t], where I (0) = 1 . Under this 

conditions, we can assume that I(t) ∝ R (t + 
1

γ
), where 

1

γ
 is the average time for an infected individual to die. 

So Exp [(β-γ) t] = R (t + 
1

γ
), where K = 

1

0.49
 and 49.9% 

of infected people eventually die.  

We have data that represents the total number of dead 

people at time t, cumulative of β(t), so we fit the data 

with the curve. We take natural log of the data so that 

over fit will be a linear fit.  

(β − γ)t = ln  
1

0.49
 R (t +

1

γ
)        (2.0.5) 

                                       

 = ln 
1

0.49
   + ln R (t +

1

γ
) 

 

The slope of the line which best fits the data is 0.14 

this β – γ = 0.14   = 0.14t  

 

Note, ln 
1

0.49
  = 0 

0.14t = ln R (t +
1

γ
)                         (2.0.6)   

(β- γ) t = 0.14t 

(β − γ)t = 0.14t 

 

 

β = 0.14 +  γ 

Since the slope of this graph is so sensitive to the 

number of data points used in the fit, an average of 

these slopes is used to solve β. This average slope was 

taken for 10-20 data points. The average slope is 

0.118. With this information we are able to calculate a 

range for the basic reproductive number Ro =  
β

γ
 . For 

our range of γ between  
1

6
  and 

1

31
, Ro ranges from 1.57 

to 6.12. We are now ready to look at the solutions of 

the system of differential equations.  

 

  
dS

dt
 = -  

βSI

N
 

  
dI

dt
 = 

βSI

N
 – γI         (2.0.7) 

 dR

dt
 =    γI 

 

Now we develop a mean field host – vector – host - 

model with migration (vital dynamics), appropriate to 

the transmission characteristics of an Ebola virus. 

Since we only have numerical solutions, we also only 

view the graph of the solutions of each of these 

equations. The solutions plotted contain the number of 
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susceptible at time t, S (t), the number of infected at 

time t, I (t), and the number of dead at time t, R (t). We 

design to relate I (t) and R (t) to plot I (t) to fit 
 dR

dt
 to 

the best fit. Recall ,    
 dR

dt
 =  γI  so the data being 

considered is fitted by γI plus a shift 
1

γ
 to account for 

the average time from infection to death. We first 

consider how γ  varies: 
1

31
   <  γ    < 

1

6
                                                                                                                                                          

we have taken γ = 
1

25
 , 

1

5
 and  

1

31
 and N (0) = 2000.  

 

 The respective graph shows exactly what one 

expects, since by increasing the period that an 

infected individual life, 
1

γ
  , there is an increase in the 

number of dead which the model predicts.  

                                        

The next variable that we have to take into 

consideration is N (0). Now taking the range for these 

variables is attained by taking an educated guess as to 

who the true susceptible individuals are in the 

population. These individuals of course are the 

primary source of the infection which includes family 

members and public health Worker/ providers or 

medical staff caring for the infected individuals. This 

is a reasonable assumption since the only individuals 

who are at risk are those that held personal contact 

with the infected individuals. WHO reported more 240 

health care providers have developed Ebola in Guinea, 

Sierra Leone, Liberia and Nigeria and more than 120 

have died due to lack of the number of medical staff 

needed to manage the outbreaks, shortages of 

protective equipment, or improper use of what is 

available. The situation is chaotic and the medical 

response is inadequate, no proven Ebola virus specific 

treatment exists as of 31st August, 2014. Interventions 

with as – yet – unknown effects both for treatment and 

for prevention of Ebola, making medical management 

of the difficult and that they had limited capacity to 

safety burry bodies [16]. This work is very important 

in predicting the future of Ebola in West Africa. 

 

The lowest possible value of N (0) would be about 

1000 individuals since only 956 died in this August 

outbreak. A possible top limit for the greatest values 

of N(0) could be around 1914-2000, taking into 

consideration only the population size of families, 

health care workers and others livelihood in close and 

personal contact with infected individuals. 

  

The model, for larger values of N (0) over estimates 

the number of expected individuals that will die. This 

outcome may give the impression that the model badly 

represents the data, but in reality this over estimation 

could be of use to health care – workers who plan for 

how bad an outbreak may become by knowing 

statistics about the first 10-20 days of the outbreak. 

 

THE SUSCEPTIBLE – EXPOSED – 

INFECTIONS – REMOVED MODEL 

(SEIR) 

We will now model the total infections that occurred 

during the August 2014 Ebola outbreak in Guinea, 

Liberia and Sierra Leone using modification to the SIR 

model. In this model, we will differentiate between 

incubation period and infectious period of the disease. 

As earlier described S (t) is the number of susceptible 

individuals at time t. we will refer to the incubation 

period of the disease as the latent stage this individual 

has acquired infection but not yet infectious. The 

number of the latent individual at time t will be 

donated by E (t). Individuals that are infected with the 

disease and are suffering the symptoms of Ebola will 

be classified as infectious individuals. The number of 

infectious individuals at time t will be denoted by I (t), 

similarly the number of death individuals at time t will 

be denoted by R (t). The population studies will be 

constant population during the outbreak that is the 

total population at time t will be denoted by N where  

 

N = S (t) + E (t) + I (t)   + R (t)   (2.1.0) 

 

A simple system of ordinary differential equations 

(ODEs) can be used to describe the models.  

 

 
𝑑𝑠

𝑑𝑡
=  −𝛽𝑆𝐼 

𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 −  𝛼𝐸 

 
𝑑𝐼

𝑑𝑡
=  𝛼𝐸 −  𝛾𝐼           (2.1.1) 

 

𝑑𝑅  

𝑑𝑡
 =  𝛾𝐼 
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Where  𝛼 , 𝛽, and 𝛾 are positive constants. Linearising 

the system about a steady state (S, E, I) taking S = S + 

s E = E + e and I = I + i leads to  

  

 

𝑆
𝑒
𝑖
    =   

−𝛽𝐼 𝑂 −𝛽𝑆
𝛽𝐼 −𝛼 𝛽𝑆
𝑂 𝛼 −𝛾

    
𝑆
𝑒
𝑖
         (2.1.2) 

 

The dominant eigenvalue of the Jacobian at the 

steady state ( S = N, E = 0, I = 0) gives the growth 

rate of the epidemic curves. 

 

𝜆 = (−𝛾 +  𝛼) +     (𝛼 − 𝛾)2 + 4 𝛽𝑁𝛼             (2.1.3) 

                              2 

Note: The growth of the epidemic is dependent on the 

rate of transmission from the latent infectious 

period 𝛼. The rise in early epidemic curve𝜆, is easily 

calculated during the outbreak. Inferences regarding β 

based on the value of λ will be highly sensitive to 𝛼 

which is often taken to be the reciprocal of the mean 

duration of the incubation period. Model of such, 

implicitly assume that E and I are negative 

exponentially distributed parameters 𝛼  and 𝛾 

respectively. [11] Showed that assumption of the 

critical community size, the size necessary to sustain 

endemic transmission, for measles. The over – 

production or overestimation earlier observed in the S-

I –R model of the fade outs that occurred in standard ( 

exponential infectious periods) model was corrected. 

By allowing the infectious periods be normally 

distributed in the line with observed infections period 

distributions. Estimates of infectivity, particularly 

those based on the early epidemic curve are also highly 

sensitive to the shape of the survival curve in the 

exposed and infections compartments. [13]. [7] 

showed that the latent period for SARs is not 

exponential [13] showed that non – exponential 

compartmental sojourn times lead to more realistic 

model predictions for the SIR model. 

 

Now, to better understand the non – exponential 

compartmental predictions of Ebola, we choose to 

design and modify the SIR model as follows.  

 
𝑑𝑠

𝑑𝑡
   =  - 

𝛽𝑆

𝑁
  (I + 𝑞𝐸) 

𝑑𝐸

𝑑𝑡
  =   

𝛽𝑆

𝑁
 (𝐼 +  𝑞𝐸) −  𝞭𝛿𝐸       (2.1.4) 

𝑑𝐼

𝑑𝑡
   = 𝛿𝐸 −  𝛾𝐼                           

𝑑𝑅

𝑑𝑡
  = 𝛾I 

 

This model takes into consideration the number of 

people infected due to direct contact with infected and 

latent individuals. 𝛽𝑆
(𝐼+ 𝑞𝐸)

𝑁
. In this model 𝛽 = 𝐶𝑃 

where P is the probability of successful getting 

infected when coming into with and infected 

individual, and C is the per – capita content the 

parameter 𝑞(𝑂 ≤ 𝑞 ≤ 𝐼) is a weight factor added to 

the model since it is known that a susceptible 

individual has a higher chance of getting infected from 

an infections individuals then infected from an 

infectious individuals than from a latent individual [ 

4],  

 

The individual in the latent stage eventually shows the 

symptoms of the disease and pass on to the infections 

stage. The outbreak began in Guinea in December 

2013, but was not dictated until March 2014.The latent 

stage is denoted  by 𝛿𝐸 , where 𝛿  is the per capita 

infectious rate .Then 
1

𝛿
 becomes the average time for 

the latent individual to become infectious, this will be 

denoted by  𝛾𝐼,where 𝛾 is the per –capita death rate. 

Then  
𝐼

𝛾
 becomes the average time it takes and 

individual to die once entered into the infectious stage. 

As before death and recovery are taken to be the same, 

since there has not been a case in which a person who 

survived Ebola contacts the disease again. This shows 

the number of people who became infected each day 

during the outbreak in Guinea, Liberia and Sierra 

Leone, August, 2014. From this data we can now 

calculate 𝛽using a similar method to the one in the 

previous model. To do this, we first make 

assumptions.  

 

Assumption 1: In the beginning of the epidemic 

 N (t ) = S (t) 

 

Assumption 2: Initially, there is a constant number of 

individuals infected. Those individuals infect other 

individuals who become latent. It takes 
𝐼

𝛿
 days for the 

latent individuals to become infectious. Therefore, for 

the first 
𝐼

𝛿
 days, the rate of change of the infectious 

individuals is 0 (i.e. 
𝑑𝐼 

𝑑𝑡
 = 0). 

 



 Islamic University Journal     Vol 4, No.2 Dec, 2015   7 

 

 
www.iuiu.ac.ug 

Assumption 3: In order for an individual to become 

infectious, they must pass through the latent stage. 

Thus, the data for the latent stage is the same as the 

data for the infectious stage, the only difference being 

that the latent stage data occurred 
𝐼

𝛿
 days before. Since 

𝐼

𝛿
 is the average time it takes for a latent individual to 

become infectious, and the latent stage ranges from 2 

to 21 days, we choose 
𝐼

𝛿
 = 15. Similarly, since 

𝐼

𝛾
 is the 

average time it takes for an infectious individual to die, 

and of the infectious stage ranges 4 to 10 days, 
𝐼

𝛾
 =7. 

Thus, we then look at the following equations to 

estimate 𝛽: 
𝑑𝐸

𝑑𝑡
=  

β𝑆

𝑁
(𝐼 + 𝑞𝐸) − 𝛿𝐸 

                       ⇒         
𝑑𝐸  

𝑑𝑡
=  𝛽(𝐼 +

𝑞𝐸) − 𝛿𝐸   ( ∗) 

 

 By the first assumption;             

  (2.1.5) 

     ⇒            
𝑑𝐼

𝑑𝑡
 =  𝛿𝐸 − 𝛾𝐼 = 0 ⇒ 𝐼 = 𝛿𝐸/𝛾 

 

 By the second assumption.  

If we substitute I into ∗, then 
𝑑𝐸

𝑑𝑡
  =[𝛽(

𝛿

𝛾
− 𝛿)]𝐸. 

(2.1.6) 

The information for 
𝑑𝐸

𝑑𝑡
 is given by the daily infection 

data; the information for E is the cumulative of the 

infection data. Thus, we have a linear relationship, and 

we can estimate the slope by doing a linear fit. Using 

Mathematica and the data for the first 15 days, we 

obtain the fit where equation of the line is 0.3412 t. 

Thus, we now have the slope of the best fit line, 

and 𝛽 =
0.3412+ 𝛿

𝛿  

 𝛾
+ 𝑞

=  0.49949,if we Take q = 0.35 and 

the values of 𝛿 𝑎𝑛𝑑 𝛾 given above. The choice for q is 

arbitrary and is picked so that the model best fits the 

supplies data. 

 

Another important number that needs to be computed 

is the basic reproductive number, RO. This number 

tells us how fast the disease will spread at the 

beginning of the matrix of the system of equations 

need to be considered. It is easy to show that the 

disease – free state is (S,E,I,R) = (N,0,0,0). Once the 

Jacobian is evaluated at this point, the determine and 

the trace must both be greater than zero to ensure that 

the disease – Free State is an unstable fixed point. 

Once all of this is accomplished, we obtain a value for 

Ro. 

 

THE BASIC AND THE EFFECTIVE 

REPRODUCTION RATIO, RO 

 

The Basic reproduction rate (Ro) is defined as “The 

average number of persons directly infected by an 

infectious case during its entire infectious period after 

entering a totaling susceptible population” [10] Ro is a 

function of daily infectivity and expected duration of 

infectivity. The effective reproduction ratio, Re is the 

expected number of person directly infected by an 

infectious case without the assumptions of a fully 

susceptible population. Two key parameters 

describing the spread of an infectious and the basic and 

effective reproduction number Ro and Re, which are 

defined as the number of secondary infectious 

generated by an infected under case in the absence and 

presence of control intervention. If Re drops below 

unity, the epidemic eventually stops. Several studies 

have fitted mathematical models to date from 

preventing outbreak of the germs Ebola virus [2]. 

Previous estimate of Ro from outbreaks in Congo 

(1995) and Uganda (2000) range from 1.3 – 2.7 [5] It 

will be important to know the reproductive numbers of 

the current Ebola outbreak in West Africa. This will 

facilitate making projections and allow comparisons 

of the effects of control measures in each country. In 

this study we describe the 2014 EBOV epidemic using 

SIR and SEIR models. Fitting the models to the most 

recent data about reported cases and death in Guinea, 

Sierre Leone and Liberia provided estimates of the 

reproduction numbers of Ebola in absence and 

presence of control measures. In the SIR or SEIR 

model, with constant hazard of transmission between 

compartment and constant infections, the Re = 
𝛽𝑆𝐼

𝛾
  

when the entire population is susceptible (S (0) = N), 

this expression gives the    Ro = 
𝛽𝑁

𝛾
. 

 A more general expression could be obtained when 

the infectivity period and the transit time over the 

infectious period is not necessarily negative 

exponential 

Ro = ∫ 𝐶 (𝜏)𝑃 (𝜏)𝑞 (𝜏)𝑑𝜏,
∞

𝑜
 (3.0.1) 
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Where 𝜏 is the time since transmission occurred to an 

individual and q (𝜏) is the probability of remaining 

infectious, C (𝜏 ) is the contact rate and P (𝜏 ) the 

probability of transmission per contact, a time period 

𝜏  from infection. In further work we will use Bayesian 

inference to estimate the changes in infectivity over 

the course of Ebola infection.  

But for now, as deduced from the system of equations.  

Ro = ( 
𝛽

𝛾
 ) (I + 

𝑞𝛾

𝛿
 ) = 6.12      (3.0.2) 

 

SUGGESTIONS FOR FUTURE RESEARCH 

 

The models presented in this research used a constant 

effective rate, 𝛽. This is may not be the best model for 

𝛽 since the probability of contracting the Ebola virus 

varies as the disease becomes more widespread. 

People are more careful with whom they have contact. 

Thus the number of contacts decreases as time elapses 

or as the number of infected increases. Therefore, it 

makes sense to have β decrease. Another idea for 

enhancing the model is to consider quarantine. When 

infected people are isolated, the numbers of contacts 

that can transmit the disease decrease. This smoothing 

that could be taken into account in future research with 

these models. More research needs to be conducted to 

estimate N, the total population. A good number for N 

is very important, since as it varies the accuracy of 

information that may prove helpful in estimating N 

includes the number of staff members in hospitals, 

family size, and other data that may help determine the 

total susceptible at the beginning of an Ebola outbreak. 

 

Research on q is also essential. It is intuitively clear 

that individuals showing symptoms of the Ebola 

disease are more infectious than latent individuals who 

show no symptoms. Therefore, a better value for q 

would make the model more accurate in predicting the 

dynamics of a future Ebola outbreak in West Africa.  

  

 TABLE 3: Major outbreak in some Africa countries since Ebola was first discovered 1976[19] 

Location Date Cases Death Percentage of death  

Democratic Republic of Congo 1976 318 280  88% 

Sudan 1976 284 151  53% 

Democratic republic of Congo 1999 315 250  79% 

Uganda 2000-2001 425 224  53% 

Democratic republic of Congo  Dec 2002-April 2005 143 128  90% 

Democratic republic of Congo 2007 265 187  71% 

Uganda Dec 2007-June 2008 131 42  33% 

Note: Democratic Republic of Congo was Named 

Zaire when the outbreak occurred  

Source: Centres for Disease Control (CDC) and 

prevention. Ebola was 1st discovered in Zaire in 1976 

here the reported cases and death in the biggest Ebola 

outbreaks since then.  

 

As of 6th September, 2014 another outbreak in the 

Democratic republic of Congo, where has 59 

confirmed cases and 32 deaths is believed to be 

unrelated to the West Africa outbreak [20]. 

 

CONCLUSION 

 

In our model, people are susceptible, infected or 

recovered. We calculated Ro values from 1.57 – 6.12 

meanwhile the range of values for Ebola virus disease 

is 1.72 ≤ Ro ≤8.60 Ro earlier computed for the 1976 

epidemic in Yambuku in Zaire ranged from 2.6 ≤ Ro 

≤ 5.03 . This is to say our results makes sense since it 

shows that Ebola patients were infected more in 

August, 2014 than in the previous months during the 

outbreak. The England and Wales measles outbreak 

1950-68 Ro, ranged 16 – 18, HIV in Hampara 1985-7 

ranged 10-11 as earlier reviewed. This study predicts 

the transmissibility of an agent increases via contact 

rate as the value of infection control reduces.  

 

Furthermore, this result assumed that the time scale of 

the outbreak is short and the population size N= 2000 

was chosen by design to depict clearly the method of 

Ebola transmission and therefore making the model 

more accurate in predicting the dynamics of a future 

Ebola outbreak. These models are very important 

because they are put as upper bounds on the number 

of deaths, and this can help researchers and health care 
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providers plan for the later part of an outbreak by 

calculating the parameters from the date at start of the 

epidemic.  

 

In summary, the number of deaths can also be 

minimized by lowering the β. This can be achieved by 

implementing intervention controls such as 

vaccination, quarantine, washing of hands with 

sanitizers, and others. We noted, the rate at which the 

transmission is going, if viable and extremely 

aggressive intervention control is not employed 

immediately in the nearest future many will suffer 

death in West Africa and the neighboring regions. Sure 

the outbreak will be disastrous. This result will be used 

to develop programs that will minimize the effective 

contact rate. This study can be improved / extended in 

various ways, including understanding the non – linear 

mode of the transmission, nosocomial pathogens in 

hospital setting, public health cure intervention policy 

in reducing effective contact rate in this case by 

significantly reducing Ebola infection. We must 

quickly act to eliminate or drastically reduce Ebola 

virus before it will eliminate us in Africa.  

 

The Key difference between the models presented here 

and other models of infectious disease is that it 

predicts with precision the upper bound of deaths at a 

given time t. This demonstrates the flexibility of 

mathematical models for an unusual outbreak and 

shows how mathematical models can respond quickly 

to a wide variety of challenges in epidemiology. 

Inaccuracies in the model are to be expected since the 

parameters dictating the behaviour of the model are 

obtained from only a few data points. There have been 

so few amounts of data available. This model’s 

precision is dependent on this limitation. Sensitivity 

analysis on the transmission dynamics of Ebola in 

hospitals nosocomially and the endemic equilibrium 

state of our model will be discussed in a subsequent 

paper. 
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